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Abstract—An optimal control approach for minimizing 
metallurgical length deviation during casting speed increase 
under constraints on the secondary cooling flow rates for 
continuous steel casting process is proposed. The process is 
described as a single-phase Stefan problem. The temperature 
and the shell growth are controlled by the steel surface heat flux 
generated by the cooling sprays. A cost function reflecting the 
error in tracking of a reference shell thickness is chosen, and the 
control objective is formulated as the minimization of this cost 
function under the spray rate constraints. Finding the control 
law satisfying this objective is formulated as a two-step 
procedure. First, an analytical setting for the cost function 
minimization is established through deriving the corresponding 
direct, adjoint, and sensitivity systems. Then, a computational 
procedure for solving this analytical setting, which finds the 
actual control law, is given. A numerical example presents the 
application of the method proposed. The results are then 
extended to a 2D model, with the corresponding numerical 
example provided. 

I. INTRODUCTION 

The continuous steel casting process can be described by 
1D single-phase Stefan problem partial differential equations 
(PDE) [1], [2] or a more detailed enthalpy formulation [3]. A 
set of simplified 1D models could be assembled into a 2D 
cross-section transient model of the 3D slab solidification 
process through spatial step interpolation [4]. A 2D model 
could then be used to estimate the distributed temperature 
profile within the strand in real-time employing only boundary 
measurements.  

The optimal control of Stefan problem has been considered 
in several publications. In [5], the authors, first, proposed the 
optimal control law for a one-phase Stefan problem to 
maximize the interface movement in certain time through 
boundary input, and then proved the control law uniqueness. 
The problem considered in the present work is more 
complicated and optimal control to address it cannot be 
proposed beforehand. In [6], a bang-bang optimal periodic 
boundary control for a two-phase Stefan problem is derived to 
track a reference temperature distribution. However, the 
present work considers a different problem – control of the 
solid-liquid interface through flux input at the fixed boundary. 
In [7], a series representation of the solution of a one-
dimensional one-phase Stefan problem is used to study motion 
planning through a boundary control. Hinze and Ziegenbalg 
[8] represent the interface in a two-phase Stefan problem as 
the graph of a function over a rectangular domain. They use 
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the temperature at the boundary of the container as the control 
variable and aim to track the desired interface motion. 
However, Dirichlet boundary control is not implementable in 
continuous steel casting, since cooling is accomplished 
through boundary heat flux extraction corresponding to 
Neumann boundary condition. In [2], [9], Petrus et al. 
proposed entropy-based state and output feedback control laws 
for simultaneous control of the surface and internal 
temperatures, as well as the solidification front position 
through Dirichlet boundary measurements and Neumann 
boundary control at the solid boundary.  

The present work puts an emphasis on the metallurgical 
length maintenance problem, while neglecting temperature 
control. This leads to a different control objective - that of 
minimizing the time and the size of the deviation of the 
metallurgical length from the desired value. In order to solve 
this problem, an open-loop minimum-time optimal control 
problem needs to be formulated under hard constraints on the 
metallurgical length deviation from the desired value. The 
problem has been heuristically addressed through simulation 
for sudden speed drop [10] and sudden speed increase [11]. 
However, no rigorous derivation in support of the heuristically 
found control law has been provided. The present work 
partially fills this gap, providing the state-unconstrained non-
minimum-time optimal control law derivation for the 
minimization of the deviation of the metallurgical length from 
the desired value under hard spray rate constraints. The 
resulting control law, however, turns out to be a smoothed-out 
version of the best bang-bang control law found heuristically 
in [11].  

The problem of minimizing the metallurgical length 
deviation is addressed in the present work as follows. First, it 
is recast into a problem of tracking a reference shell 
solidification front, where Neumann boundary condition is 
used as the heat flux control input. Then, an appropriate cost 
function is formualted, and the resulting optimization problem 
is solved in two steps: first, derivation of the corresponding 
direct, adjoint, and sensitivity systems for the cost function 
minimization under the input constraints is carried out, and, 
then, a numerical procedure is formulated for solving this 
analytical setting, which computes the actual control law.  To 
the best of our knowledge, no heat-flux-driven optimization of 
this problem has been studied previously. This paper, 
therefore, presents the first control law that manipulates the 
heat flux at the fixed boundary to optimize the 1D evolution of 
the free boundary, and extends the method to a multi-slice 

B.G. Thomas (email: bgthomas@mines.edu) is with Colorado School of 
Mines, 1610 Illinois St, Golden, CO, 80401, USA. 

Optimal Control of Free Boundary of a Stefan Problem for 
Metallurgical Length Maintenance in Continuous Steel Casting 

Zhelin Chen, Joseph Bentsman, Member, IEEE, and Brian G. Thomas,  

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7928-9/$31.00 ©2019 AACC 3206



  

model to provide a 2D dynamic free boundary optimization, 
required for the continuous steel casting process.    The paper 
is organized as follows. In Section II a brief description of the 
single-slice optimization problem is given, and the analytical 
problem solution setting is derived. In Section III, the method 
is extended to an N-slice model. Section IV describes the 
numerical approach. Section V presents the simulation results. 
The proofs of formal statements are omitted due to space 
limitation and will be provided in a separate publication. 

II. SINGLE-SLICE OPTIMIZATION PROBLEM 

  Single-phase Stefan problem 

The domain of a moving 1-D slice is divided into two 
separate sub-domains, corresponding to the solid and the 
liquid steel phases. The heat flux removed from the material 
at the solid surface is directly proportional to the controlled 
flow rate of the water spray applied at the solid surface. 
Therefore, the control input is represented by the 
unidirectional heat flux Neumann boundary condition at the 
solid boundary. Temperature evolves according to the usual 
linear parabolic heat diffusion equations in each sub-domain. 
The free solidification boundary moves according to the 
temperature gradient at the liquid/solid interface, subject to 
the conservation of energy. The latter imposes the 
temperature gradient discontinuity at the free boundary due to 
the latent heat involved in the phase change. The following 
assumption is made: 

 (A1) 0 ( )T x  is continuous, 0 ( ) fT x T , 0(0, )x s , and 

0 0( ) , ( , )fT x T x s L  , 

(A1) is a simplifying, but practically justified assumption, 
as discussed in [1]. With (A1), the continuous casting process 
can be modeled using the following single-phase Stefan 
problem: 

 ( , ) ( , ), (0, ( )), 0t xx fT x t aT x t x s t t t    ,  (1) 

      0, , , 0 0 ,f fT s t t =T  0<t<t s s    (2) 

    0, , 0x fT t u t t t   ,  (3) 

    , 0 0oT x =T x , <x<L ,  (4) 

 ( ) ( ( ), ), 0x fs t bT s t t t t   ,  (5) 

where the material is solid for (0, ( ))x s t  and liquid for 

( ( ), )x s t L , L is the half-thickness of the slab, fT  is the 

melting temperature, / pa k c  is the thermal diffusivity, 

/ fb k L , the properties: k (thermal conductivity),   

(density), pc  (specific heat), and fL  (latent heat) can vary 

with temperature, but stay strictly positive [3] and are assumed 
to be positive constants in this paper, ( )u t is the boundary heat 
flux extracted from the strand surface, and tf is the total time 
needed for the slice shown in Figure 1 to move from the 
meniscus to the end of a caster. In the equations above, 
subscripts x and t indicate partial derivatives. 

In an actual caster, the feasible range of the cooling water 
flow rates is hard-constrained by the physical limitation of the 
spray cooling system, making the possible heat flux at the 
strand surface hard-constrained and piecewise continuous: 

 1 2( ) 0 ,, fM u t M t t     where 1 2, 0M M  .   

   Optimal control in finite time 

In [10], bang-bang control sequences to minimize 
metallurgical length (ML) deviation during a sudden speed 
drop were designed. The present paper considers the same 
problem as in [11]: minimizing the ML deviation during a 
sudden, and more dangerous due to the possibility of the 
molten steel escape, casting speed increase. 

Denote z-axis as the casting direction, where 0z   and  
zend represent, respectively, the meniscus and the end of the 
caster. ML is determined by the shell thickness profile along 
the caster, s(z); therefore, the goal of minimizing the ML 
deviation can be recast into minimizing the deviation of the 
shell thickness profile from the reference one, 𝑠̅ሺ𝑧ሻ. By taking 
the Lagrangian reference frame, the simulation domain of the 
equations (1)-(5) moves in the casting direction at casting 
speed,  cv t . Therefore, assuming the domain starts at the 

meniscus at time t=0, the reference   𝑠̅ሺ𝑧ሻ, 0 ൏ 𝑧 ൏ 𝑧௘௡ௗ  can 
be transferred to time domain, 𝑠̅ሺ𝑡ሻ, 0 ൏ 𝑧 ൏ 𝑡௙, by 

      
0 0

.
ft t

c end cz t v d and z v d        (6) 

Even if the reference shell thickness profile along the z-
axis, 𝑠̅ሺ𝑧ሻ, stays the same, the corresponding reference in time, 
𝑠̅ሺ𝑡ሻ, may be different for different casting speed profiles. 

 In the present work, the case of a sudden casting speed 
increase is considered: a slice starts at the meniscus at t=0, with 
casting speed 1cv , and at *t t , the casting speed increases to

2cv . Let 1( )s t and ( )s t denote, respectively, the shell thickness 

profiles of the slice and the reference. At the time of casting 
speed change, the slice resides at location 

 * *
1cz v t .   (7) 

For this slice, the total residence time in the caster is 

 
*

* 1
1

2

.end c
f

c

z v t
t t

v


    (8) 

Notice that under the settings of the present work, the shell 
thickness profile,  s z  , is that uniquely realized at the 

casting speed 1.cv  Therefore,    1s t s t  for  *0, .t t  

Then, the minimization of the metallurgical length deviation 
can be reformulated as the minimization of the difference 
between  s t and  s t for the remaining travel time of this 

slice in the caster.  

Define a new time coordinate, 't , by taking a time shift of 
*t , i.e. *'t t t  . Then,  1 's t  and  's t  are defined on

 *' , ft t t  , where *
1f ft t t  . Further,  0, ft  is the 

residence time of the slice subject to the optimal control after 
the speed increase.  

Now, introduce the functional: 

 2

0
( ) ( ( ') ( ')) ',

ft

uJ s s t s t dt    (9) 

and consider the following control set: 
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 1 2{ [0, ], ( ') }ad fU u L t M u t M    .  (10) 

For simplicity, denote  uJ s  as  J u . Then, the optimal 

control problem can be described as: 

Problem (I). Find ( ') ad
ou t U such that 

( ) min ( )
adu

o

U
J u J u


 . 

For the ease of notation, in the remaining part of this paper, 
t is used in place of '.t  

  Existence of optimal control 

The existence and uniqueness of solution for the above 
single-phase Stefan problem under bang-bang control have 
been proven [11]. In this work, the existence of optimal 
solutions for Problem (I) is proven. 

Theorem 1: There exists an optimal control *
adu U  that 

solves Problem (I). 

  Derivation of the optimality system 

In this section, the first-order necessary optimality 
condition is derived for the minimization problem using the 
Lagrange approach. The following Lagrange functional is 
used (the dx and dt have been omitted for brevity): 

 

2

0 0 ( )

0 0

( , , , , , ) ( ) ( )

( (0) ) ( ( ( ))) .

f f

f f

t t

t xxs t

t t

x x

L u T s p q h s s T aT p

T u q s bT s t h

   

   

  

  
 (11) 

The functions ( , ), ( ),p x t q t and ( )h t  denote the Lagrange 

multipliers associated with (1)-(5). The first order necessary 
optimality condition for the optimization problem now is given 
by: 

0L  , 
and the adjoint equation system for our problem is defined 
through 

0 0T sL T   and  L s   , 

for all feasible directions T  and s . TL  and sL  here denote 
the directional derivatives of L with respect to T and s, 
respectively. 

 The directional derivative of L with respect to T takes the 
form 

( )

0 0 0 0
( ) (0) ( ( ))

f f ft s t t t

T t xx x xL hT T aT T bT sq tp             .  (12) 

Integrating by parts with respect to time and space, sorting 
the terms corresponding to their domains of integration, and 
using 𝑇෨ሺ𝑥, 0ሻ ൌ 0 (since 𝑇ሺ𝑥, 0ሻ ൌ 𝑇଴  is required explicitly) 
yields the adjoint system for temperature of the form 

 ( , ) 0, (0, ( ))f fp x t x s t   ,  (13) 

 (0, ) 0, (0, )x fp t t t   ,  (14) 

 ( ) ( ( ), ), (0, )f

a
h t p s t t t t

b
   ,  (15) 

 ( ) (0, ), (0, )fq t ap t t t   ,  (16) 

 ( , ) ( , ) 0, (0, ( )), (0, )t xx f fp x t ap x t x s t t t    ,  (17) 

 ( ) ( ( ), ) ( ( ), ), (0, )x fs t p s t t ap s t t t t   .  (18) 

Next, reassembling the Lagrange function by integration 

by parts (similarly to TL T ), and substituting the already known 

parts of the adjoint equation system obtained above yields 
02

0 0 0 0
( ) (0) (0)

f f ft s t t
L s s T p uq sh         . 

The directional derivative with respect to s is equal to 

 
0 0

2( )
f ft t

s hL s s s s s       . 

Integration by parts yields 

0

1
2( ) ( ) ( ) (0) (0)

2
ft

s t f fL hs s s h s s t t hs        . 

Using 𝑠̃ሺ0ሻ ൌ 0 (since 𝑠ሺ0ሻ ൌ 𝑠̅ሺ0ሻ) and ℎ൫𝑡௙൯ ൌ 0 
(which follows from (13) and (15)), the adjoint system for 
solidification front is given by 

 
1

( ) ( ) ( ) 0
2 ts t s t h t   .  (19) 

Now, with the adjoint system (13)-(19), the only missing 
ingredient of the desired optimality system is .uL u  

Differentiating (11) with respect to u yields 

 
0

ft

u qL u u   . (20) 

Equation (20) is the first order necessary optimally 
condition when the control u is unconstrained. In our case, for 
𝑢 ∈ 𝑈௔ௗ, the optimality condition is replaced by a variational 
inequality (Chapter 3 of [12]), which has the form: 

 
0

( ) ( )( ) 0
ft

uL v u q t v u      (21) 

for all boundary functions v  satisfying 1 2M v M  . 

In summary, the optimality system of the optimal control 
Problem (I) in the absence of control and state constraints is 
given by: 

 the forward system (1)-(5) 
 the adjoint system (13)-(19) 
 the gradient equation (21) 

III. MULTI-SLICE OPTIMIZATION PROBLEM 

The above optimization problem considers only a single 
slice of steel in the caster, and the boundary flux u can be 
chosen to best suit that particular slice's reference shell 
thickness. In commercial casters, however, the spray region is 
usually subdivided into several aggregated spray zones, each 
linking a group of spray nozzles together. Therefore, any slice 
inside the spray zone will be subject to the same boundary flux. 
Each spray zone may have a different feasible region, adU , 

since 1 2,M M can be different based on the caster settings. 
Therefore, the optimal control problem described in Section II 
is for one spray zone, rather than for the entire caster. The 
results are, therefore, extended next from a single-slice/single-
spray-zone setting to a multi-slice/single-spray-zone one.   

  Control problem formulation 

Let 0 0, , , , , 1, 2,..., ,i i
i i fis T z s t i N  be the initial shell 

thickness, the initial temperature, location of the speed jump, 
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the reference shell thickness, and the residence time, 
respectively. If 1 2 ... Nz z z   , then 1 2 ...f f fNt t t   . 

Define the cost function: 

 2

0
1

( ) ( ( ) ( ))
fi

N t

N i iJ u s s d    , (22) 

under the following control set: 

1 2{ [0, ], ( ) }fNNU u L t M u t M    . 

Problem (II). Find * ( ) Nu t U  such that 
*( ) min ( )

u U N
N NJ u J u



 . 

Theorem 2: There exists an optimal control *
Nu U  that 

solves Problem (II). 
 

 Derivation of the optimality system 

In this section, the optimality system for N slices is derived. 
The following Lagrange functional is used: 

2

0 0 ( )
1 1

0 0
1 1

.0

( ) ( )

( ( ) ) ( ( ( )))

fi fi

i

fi fi

N Nt t

i i it ixx is t
i i

N Nt t

ix i i ix i i
i i

L s s T aT p

T u q s bT s t h

 

 

   

   

   

   
  

The functions ( , ), ( ), ( ), 1, 2,...,i i ip x t q t h t i N  denote the 

Lagrange multipliers associated with (1)-(5). The adjoint 
equation system for our problem is defined through 

0 0, 1, 2,...,
i iT i s iL T   and  L s i N    . 

Following the same procedure as in Section II.D yields the 
following adjoint system for each slice i: 

 ( , ) 0, (0, ( ))i fi i fip x t x s t  ,  (23) 

 (0, ) 0, (0, )ix fip t t t  ,  (24) 

 ( ) ( ( ), ), (0, )i i i fi

a
h t p s t t t t

b
   ,  (25) 

 ( ) (0, ), (0, )i i fiq t ap t t t   ,  (26) 

 ( , ) ( , ) 0, (0, ( )) (0, )it ixx i fi fip x t ap x t s t t   ,  (27) 

 ( ) ( ( ), ) ( ( ), ), (0, )i i i ix i fis t p s t t ap s t t t t  ,  (28) 

 ( ) 2( ( ) ( )), (0, )it i i fih t s t s t t t    .  (29) 

The gradient for the control is given by 

 
1 1

0
1 1 1

f fi

fi

N N Nt t

u i it
i i i

L u q u q u


  

        ,  (30) 

yielding 

 

1
1

'
1

1

,, 0

( ) , ,

, .
N

N

i f
i

N

k fi fi
k i

N fN f

q t t

J u q t t t

q t t t









  




   

   





  (31) 

Now, with the adjoint system, the procedure described in 
Section II.D can be used to solve the minimization problem. 

IV. NUMERICAL APPROACH 

In this section, a numerical approach to solving the 
proposed optimization problems is illustrated. The procedure 
used combines the explicit finite difference with the variable 
space grid (VSG) [13]. The number of spatial intervals 
between the fixed boundary 0x   and the moving boundary 

( )x s t  was kept constant and equal to xN , so that the 

moving boundary always lay on the thN  grid. The grid at the 
time instance t is defined by 

 ,

(
.

)
, , 0j

i j j j x
x

s t
x i x x i N

N
        (32) 

For the time discretization,  

, , 0,...,f
j t

t

t
t j j N

N
     , 

with ,î jT  being the discrete temperature ,
ˆ ( ( ), )i j i j jT T x t t , ˆ js

being the discrete free boundary 𝑠̂௝ ൎ 𝑠ሺ𝑡௝ሻ , 𝑝̂௜,௝ ൎ
𝑝̂ሺ𝑥௜൫𝑡௝൯, 𝑡௝ሻ  being the discrete adjoint temperature, and 

2
ˆ ˆˆ ˆ ( ), ( )j j j jq q t h h t   being the adjoint boundary conditions. 

The discrete versions of the other variables are also denoted 
with a hat. In the presence of pointwise control constraints 
Uad, the gradient method is used (Algorithm 1).  

 
Algorithm 1: Adjoint-Based Projected Gradient Method 

Input: 0u   

Output: ˆˆˆ ˆ ˆ ˆ, , , , ,u T s p q h   

1. Initialize: 0i  . 
while 1 maxk k  do: 

2. Solve the forward problem (1)-(5) for ˆ kT , ˆ .ks  

3. Solve the adjoint problem (13)-(19) for .ˆˆ ,ˆ,k k kp q h  

4. Construct the descent direction from (20): ˆ .k kv q     

5. Determine k from: 

          
1 2[ , ]: min ( ( )).k k k

M MJ P u v     

6. Set 
1 2

1
[ , ] ( ), 1.k k k k
M Mu P u v k k       

In order to ensure that the computed controls û U , the 
projection 

1 2[ , ] ( )M MP u   is introduced and defined as: 

 
1 2[ , ] 2 1( ) min{ , max{ , }}M MP u M M u  .  (33) 

Suitable stopping criteria for Algorithm 1 are 

                         
1

max 0

ˆ ˆ
: min{ : }

ˆ

k k

J

J J
k k

J

 
   , or 

1ˆ ˆmin{ :| | }k k
max uk k u u    . 

 
1) Forward step k.  

Following the same procedure as in [13], (1)-(5) can be 
recast into the following discretized version for

0,1, 2,..., 1xj N  : 

 0, 1 0, 1,2 2

2 2 2ˆ ˆ ˆ(1 )k k k k
j j j j

j j j

a a a
T T T u

x x x

  
    

  
 ,  (34) 
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,
, 1 , 1, 1,

1, , 1,2

ˆˆ ˆ ˆ ˆ( )
ˆ2

ˆ ˆ ˆ( 2 ), 1 1,

i j jk k k k
i j i j i j i j

j j

k k k
i j i j i j x

j

x s
T T T T

x s

a
T T T i N

x





  

 

  


     




  (35) 

 , ,ˆ
x

k
N j fT T   (36) 

 1 , 1, 2,
ˆ ˆ ˆˆ .ˆ (3 4

2
)

x x x

k k k k k
j j N j N j N j

j

b
s s T T T

x


     


  (37) 

Then, the algorithm for the forward step can be described 
as follows: 

 
Algorithm 2: Forward step k 

1. Initialize at t=0: 0 0 ,0 0 ,
ˆˆ , ( )k k
i i js s T T x  . 

while 1 1tj N    do: 

2. Compute the temperature ,
ˆ k
i jT   through (34)-(36). 

    3. Compute the free boundary 1ˆk
js   through (37). 

    4. Compute the new grid , 1i jx   through (32). 

 
2) Backward step k 

The backward problem uses the same grid ,i jx  as that used 

in the forward problem. Similarly, the following discretized 
version of the adjoint system is derived: 

 1
ˆ ˆ ˆ2 ( )k k k

j j j jh h s s     ,  (38) 

 , 1 1
ˆˆ

x

k k
N j j

b
p h

a    ,  (39) 

 0, 1 0, 1,2 2

2 2
ˆ ˆ ˆ(1 )k k

j j j
j j

a a
p p p

x x

 
   

 
 ,  (40) 

 

,
, 1 , 1, 1,

1, , 1,2

ˆ
ˆ ˆ ˆ ˆ( )

ˆ2

ˆ ˆ ˆ( 2 ),1 1.

i j jk k k k
i j i j i j i j

j j

k k k
i j i j i j x

j

x s
p p p p

x s

a
p p p i N

x





  

 

  


     




  (41) 

Then, the algorithm for the backward step can be given by: 
 

Algorithm 3: Backward step k 

1. Initialize at t=tf : ,
ˆˆ 0, 0

t t

k k
i N Np h  . 

while 1 1tj N    do: 

2. Set boundary conditions ,ˆ
x

k
N jp   and ,ˆ

x

k
N jp  by (38)-(40). 

3. Compute ,ˆ k
i jp  by (41). 

 
3) Computation of the gradient 

The choice of the descent direction kv  in step 4 of 
Algorithm 1 corresponds to the negative gradient, i.e., the 
direction of steepest descent. 

4) Line minimization 
Exact computation of the step size k  in step 5 of 

Algorithm 1 is too complicated. Instead, the backtracking line 
search algorithm with Armijo condition (Chapter 3 of [14]) is 
used to determine an approximation to k . 

V. NUMERICAL RESULTS  

The following simulations use the parameters given in 
Table I. The simulation code based on VGS grid was verified 
against an analytical solution to the Stefan problem with 
Dirichlet boundary condition from [15]. The simulated zone 
length is 1.75endz  m, and the speed increase is from 

1 1.5cv   m/min to 2 1.75cv  m/min. The control constraints 

are 4
1 0.5 10 ,M K/s  4

2 4.0 10M K/s  .  

The spatial grid contains 21 points, and the temporal grid 
contains 10001 grid points, i.e. 20,xN   and 10000,tN 

36 10   s. The stopping criteria are chosen as 81 10J
   

m and 21 10u
   K/s. 

 

 
Figure 1.  Optimal control signal for the single-slice optimization. 

 
Figure 2.  Shell thickness under initial control and optimal control. 

 Single-slice optimization 

The initial shell thickness is 0 0.01s  m, the initial 

temperature T0 is chosen to be linear with 0 0( ) ,fT s T

0 (0) 1473T K , the dwell time after speed increase is 

2/ 60f end ct z v   sec. The reference shell thickness is the 

one with casting speed vc1 and the initial control command
4( ) 2.5 10u t    K/s. 

After the speed increase, with the initial control ( )u t , the 

cost value is ( ) 14.062J u   mm2; with the optimal control *u
shown in Figure 2, the cost goes down two orders of 
magnitude to * 2( ) 3.41 10J u    mm2. Figure 3 shows that 

the shell thickness under *u  matches the reference closely. 

 Two-slice optimization 

       Now, 2N  is considered.  At speed jump, the 1st slice is 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Distance from zone start (m)

0.01

0.015

0.02

0.025

0.03
Reference shell thickness
Initial control
Optimal control
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TABLE I. THERMODYNAMIC PROPERTIES USED IN SIMULATIONS 
 

Symbol Description Value 
k Thermal conductivity 30 W/mK 
   Density 7400 kg/m3 

pc   Specific heat 670 J/kg 

fL   Latent heat of fusion 272 kJ/kg 

fT   Melting temperature 1811 K 

L Half thickness of strand 0.1 m 

 
in the middle of the spray zone with 1 30ft   sec, while the 

2nd slice is at the beginning of the spray zone with 2 60ft  s. 

Therefore, the control ( )u t  controls both slices for 0 30t 
s, and controls only the 2nd  slice for 30 60t  s.  

With the initial control 4( ) 2.5 10u t   K/s, ( ) 15.673J u 

mm2; with the optimal control *u shown in Figure 2, 
*( ) 0.42J u  mm2. Figure 4 shows the shell thickness profile 

along the casting direction z. The results show that the 2nd 
slice has almost identical shell thickness as the reference, 
while the 1st slice’s shell thickness slightly differs from the 
reference.  

The optimal control signal, shown in Figure 5, increases to 
maximum immediately after the speed increase to maximize 
the shell growth (this matches the finding in [10], [11]). The 
shape of the optimal control commands is similar to the three 
step bang-bang control found in [10], but more smoothed. The 
results also show that better control is attained over  the 2nd 
slice than the 1st one. This difference takes place because at 
the moment of the speed increase, the 2nd slice is at the 
beginning of the spray zone, allowing for more time to control 
its shell growth under input constraints. 

 

 
Figure 3.  Shell thickness profile under initial control and optimal control 

for slice 1 and slice 2. 

 
Figure 4.  Optimal control signal for the two-slice optimization 

VI. CONCLUSION 

The problem of minimizing metallurgical length deviation 
during casting speed increase under heat flux constraints is 
formulated as tracking, under input constraints, of a 
predetermined free boundary profile. The single-slice model 
optimization approach is extended to the multi-slice model 
one. Numerical examples are presented, in which the tracking 
of the free boundary reference is attained. Future work will 
address multi-zone optimization. 

Although the optimal control problem considered in this 
paper does not explicitly incorporate the minimum time 
requirement, the resulting control law turns out to be a 
smoothed-out version of the best minimum-time bang-bang 
control law found heuristically through simulation trial-and-
error.  
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